文献库 文献相关信息

题目:
miR-182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart.
作者:
Li(Na),Hwangbo(Cheol),Jaba(Irina M),Zhang(Jiasheng),Papangeli(Irinna),Han(Jinah),Mikush(Nicole),Larrivée(Bruno),Eichmann(Anne),Chun(Hyung J),Young(Lawrence H),Tirziu(Daniela)
状态:
发布时间2016-02-18 , 更新时间 2016-10-25
期刊:
Sci Rep
摘要:
Myocardial hypertrophy is an adaptive response to hemodynamic demands. Although angiogenesis is critical to support the increase in heart mass with matching blood supply, it may also promote a hypertrophic response. Previously, we showed that cardiac angiogenesis induced by placental growth factor (PlGF), promotes myocardial hypertrophy through the paracrine action of endothelium-derived NO, which triggers the degradation of regulator of G protein signaling 4 (RGS4) to activate the Akt/mTORC1 pathways in cardiomyocytes. Here, we investigated whether miRNAs contribute to the development of hypertrophic response associated with myocardial angiogenesis. We show that miR-182 is upregulated concurrently with the development of hypertrophy in PlGF mice, but not when hypertrophy was blocked by concomitant expression of PlGF and RGS4, or by PlGF expression in eNOS(-/-) mice. Anti-miR-182 treatment inhibits the hypertrophic response and prevents the Akt/mTORC1 activation in PlGF mice and NO-treated cardiomyocytes. miR-182 reduces the expression of Bcat2, Foxo3 and Adcy6 to regulate the hypertrophic response in PlGF mice. Particularly, depletion of Bcat2, identified as a new miR-182 target, promotes Akt(Ser473)/p70-S6K(Thr389) phosphorylation and cardiomyocyte hypertrophy. LV pressure overload did not upregulate miR-182. Thus, miR-182 is a novel target of endothelial-cardiomyocyte crosstalk and plays an important role in the angiogenesis induced-hypertrophic response.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。