文献库 文献相关信息

题目:
Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types.
作者:
Peng(Li),Bian(Xiu Wu),Li(Di Kang),Xu(Chuan),Wang(Guang Ming),Xia(Qing You),Xiong(Qing)
状态:
发布时间2015-08-21 , 更新时间 2015-09-02
期刊:
Sci Rep
摘要:
The Cancer Genome Atlas (TCGA) has accrued RNA-Seq-based transcriptome data for more than 4000 cancer tissue samples across 12 cancer types, translating these data into biological insights remains a major challenge. We analyzed and compared the transcriptomes of 4043 cancer and 548 normal tissue samples from 21 TCGA cancer types, and created a comprehensive catalog of gene expression alterations for each cancer type. By clustering genes into co-regulated gene sets, we identified seven cross-cancer gene signatures altered across a diverse panel of primary human cancer samples. A 14-gene signature extracted from these seven cross-cancer gene signatures precisely differentiated between cancerous and normal samples, the predictive accuracy of leave-one-out cross-validation (LOOCV) were 92.04%, 96.23%, 91.76%, 90.05%, 88.17%, 94.29%, and 99.10% for BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC, respectively. A lung cancer-specific gene signature, containing SFTPA1 and SFTPA2 genes, accurately distinguished lung cancer from other cancer samples, the predictive accuracy of LOOCV for TCGA and GSE5364 data were 95.68% and 100%, respectively. These gene signatures provide rich insights into the transcriptional programs that trigger tumorigenesis and metastasis, and many genes in the signature gene panels may be of significant value to the diagnosis and treatment of cancer.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。