文献库 文献相关信息

题目:
G-protein signaling participates in the development of diabetic cardiomyopathy.
作者:
Harris(Ian S),Treskov(Ilya),Rowley(Michael W),Heximer(Scott),Kaltenbronn(Kevin),Finck(Brian N),Gross(Richard W),Kelly(Daniel P),Blumer(Kendall J),Muslin(Anthony J)
状态:
发布时间2004-11-24 , 更新时间 2016-10-19
期刊:
Diabetes
摘要:
Diabetic patients develop a cardiomyopathy that consists of ventricular hypertrophy and diastolic dysfunction. Although the pathogenesis of this condition is poorly understood, previous studies implicated abnormal G-protein activation. In this work, mice with cardiac overexpression of the transcription factor peroxisome proliferator-activated receptor-alpha (PPAR-alpha) were examined as a model of diabetic cardiomyopathy. PPAR-alpha transgenic mice develop spontaneous cardiac hypertrophy, contractile dysfunction, and "fetal" gene induction. We examined the role of abnormal G-protein activation in the pathogenesis of cardiac dysfunction by crossing PPAR-alpha mice with transgenic mice with cardiac-specific overexpression of regulator of G-protein signaling subtype 4 (RGS4), a GTPase activating protein for Gq and Gi. Generation of compound transgenic mice demonstrated that cardiac RGS4 overexpression ameliorated the cardiomyopathic phenotype that occurred as a result of PPAR-alpha overexpression without affecting the metabolic abnormalities seen in these hearts. Next, transgenic mice with increased or decreased cardiac Gq signaling were made diabetic by injection with streptozotocin (STZ). RGS4 transgenic mice were resistant to STZ-induced cardiac fetal gene induction. Transgenic mice with cardiac-specific expression of mutant Galphaq, Galphaq-G188S, that is resistant to RGS protein action were sensitized to the development of STZ-induced cardiac fetal gene induction and bradycardia. These results establish that Gq-mediated signaling plays a critical role in the pathogenesis of diabetic cardiomyopathy.
语言:
eng
DOI:

联系方式

山东省济南市章丘区文博路2号 齐鲁师范学院 genelibs生信实验室

山东省济南市高新区舜华路750号大学科技园北区F座4单元2楼

电话: 0531-88819269

E-mail: product@genelibs.com

微信公众号

关注微信订阅号,实时查看信息,关注医学生物学动态。